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The shape of a plasma burner is optimized by the methods of numerical modeling. Vortex-free flow is created 

in the burner merely at the expense of selecting the external tube profile rather than by introduction of 

additional protective flows into the burner. 

One of the intensely developing trends in the technology of quartz glass is plasmochemical synthesis of 

silicon dioxide from high-purity chlorides. In particular, application of plasmochemical methods resulted in creating 

a new generation of light conductors based on fluorine-doped silica glasses. In a number of methods synthesis is 

carried out in a plasma burner, the silicon dioxide being removed from the burner by a plasma jet and being directed 

to the mold with the jet flowing around. 

A plasma burner is a section of a quartz tube passing through an HF-inductor or an SHF-waveguide [1, 

2 ]. A twisted gas flow is supplied to the tube via nozzle 1 (Fig. la). In such a flow the plasma discharge excited 

by the electromagnetic field is localized in the near-axis region of the quartz tube and is separated from its walls 

by an unheated gas layer, which ensures pure conditions of plasmachemical synthesis. 

The highest efficiency of transformation of the starting reagents into the final product of synthesis is 

obtained in supplying the reagents through axial nozzle 2 (Fig. l b). However, the design shown in Fig. I b is not 

viable since recirculation vortices developing between the nozzle cut and the plasma (Fig. 2) return a portion of the 

silicon dioxide synthesized in the plasma; there occurs blocking of the nozzles, which leads to loss of stability of 

the plasma flame and degradation of the burner. 

One of the variants of designs for plasma burners used in practice is shown in Fig. lc. By introducing a 

shielding flow of inert gas via additional annular nozzle 3 one achieves the spacing of the recirculation zone and 

the zone of synthesis of the product which leads to a decrease in the rate of nozzle overgrowth. A numerical 

calculation of the characteristics of such a design is given in [3 ]. 

For reasons of the complexity of technical realization and maintenance of the design in Fig. Ic one often 

injects reagents into the flame outside the burner, accepting a considerable decrease in the efficiency of the use of 

the reagents and energy contributed to the plasma (Fig. ld). 

Using SHF-excitation of the discharge in plasma burners enabled one to realize the technological process 

of plasmachemical synthesis of fluoride-doped silica glasses for research purposes at lowered capacities and flow 

rates of the plasma-forming gases [4, 5 ]. In this connection there arose the problem of miniaturizing plasma burners 

and simplifying their design without loss in the efficient use of raw materials and energy. 

The method of modeling used by the authors made it possible to create vortex-free flow in the burner just 

by selecting the external tube profile rather than by introducing into the burner additional protective flows. The 

method used makes it possible to model nonstationary flows in arbitrarily shaped and connected regions (contrary 

to, for example, [3 ]) and is therefore applicable to study aerohydrodynamic processes in burners of arbitrary shape, 

which ensured progress in the problem. 
As a mathematical model use is made of a system of hydrodynamic equations that includes nonstationary 

Navier-Stokes equations written in natural variables and an equation of continuity: 
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Fig. 1. Designs of plasma burners: a) scheme of the simplest plasma burner; 

b-d) different variants of reagent supply to the plasma. 

OU 1 
at ~- (uv)  0 = - - v P  -4- ~ A/if, div 0 = 0. (1) 

Here t is the time, U = (U1, U2, U3 ) is the velocity, P is the pressure, Re = (UoLo)/v is the Reynolds number, 

Lo, Uo are the characteristic scale of the burner and the characteristic velocity of the flows, v is the kinematic 

viscosity. Equations (1) are writ ten in dimensionless form. The possibility of using the assumption of 

incompressibility follows fromthe fact that the flow velocities in the burner do not exceed 1/3 of the speed of sound. 

At these velocities variations in the density and temperature of the gas, occurring in the flow field, are relatively 

small and therefore the gas may be considered incompressible. Such an approach is correct outside the zone of 

plasma formation, where the investigations have been performed. 

The intricacy of the geometric shape leads to the need to use a curvilinear coordinate system in constructing 

difference schemes. To construct computational grids, the Thompson method was used [5 ]. This method permits 

the construction of two- and three-dimensional computational grids of arbitrary connectivity with crowding of the 
nodes at assumed sites of large gradients of the solution. 

In constructing an adapted computational grid we prescribe the mapping of the computational region D in 

the variables (Yl, Y2, Y3) into the initial region f2 in the variables (Xl, x2, x3) [6 ]. In the region D the image of 

the initial grid is a uniform orthogonal grid on which the numerical solution of the problem (1) is performed. The 

differential operators in system (1) in a curvilinear coordinate system have the form 

vP = ' Z  0p - Z (u, Jv . ) ,  gsheh, div /~= 1 
.=, ~ i = ,  " " =  k ~ l  

k = l  i ~ l  / '=1 
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Fig. 2. Vortex formation processes in a plasma burner. 
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where em is the unit vector of the x m axis; U = Um'em;  J is the Jacobian of the transformation (X l ,  x 2 ,  x 3 )  ~ (Yl, 

Y2, Y3); Yjk are the elements of the Jacobi matrix D(y ) /D(x ) ,  considered as functions of the variables Yl, Y2, and 

Y3. 
When performing the calculations use was made of two different methods for solution of the system of 

hydrodynamic equations: the method of splitting into physical variables and that of parabolic e-regularization of 

the continuity equation. Results of calculations by both methods turned out closely similar. 

We define in the region D in question the computational grid: D h = {(Yl, Y2, Y3);  Yl = (i - 1 ) h i ,  Y2 = (J - 
1)h2, Y3 = (k - 1)h 3, i = 1 . . . . .  nl,  j = 1 . . . . .  n2, k = 1 . . . . .  n3, (Yl, Y2, Y3) ED} and the grid functions 

U = U(yl ,  Y2, Y3), P = P(Yl, Y2, Y3). The functions U are considered as vectors in the initial coordinate system 
and are determined at the nodes of the computational grid, and the pressure P - at the centers of cells of the grid 

Dh. Upon substituting difference operators for the differential ones used, the resulting difference analog of the 

Navier-Stokes equation is written at the grid nodes, and of the continuity equation - at the centers of the cells. 
Denoting the difference approximations of the operators div, grad, A by div h, grad h, A h, we chose them so that the 

values of div h U, divhVhP occur at the centers of the cells and the values of gradhp, Ahu - at the grid nodes: 

divh/~ = 1 [ rl + r+g'-} - r~-g '+ r +e'+a I 
J ~ 4 ]y, 

1 ( r 2 +  r ~ a +  r ~ - a +  r +a+g'  ) 

+ - 7 -  4 u, 

+--71 ( r" + r+sa + r+e' + r+~a+g" y; 

grad~P-~[Yl'~( P+P-g'+P--g'+P-e'-g '4 

p + p-e, + p-e, + p-a-g. 
+ g2,. 4 

[ p + p-a  .}_ p-g, _}_ p - e r a  
+ Yarn \ 4 

+ 

!11 

+ 
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Here r i = J(YilU1 + Yi2U2 + Yi3U3), U+gl = U('-~ + gi), i = 1, 2, 3. The single vector em is the unit vector of the x m 

axis of the initial coordinate system, gi is the unit vector of the Yi axis. The operator Ahf appears thus: 

1 
A! = -)--[(eld,)~. ,+ (e~J,.).~. + (g,,fy)~. + (g~d~.) k + 

+ (e~do)o + (e~do)o + ( g l z f ~ ) ~ ,  -t- (g,,d % )o @ ( g z 3 / ~ ) ~  1, 
Y~ Yt Yl Y* Yz Ya 

3 

glh = ~ JYtmYmh. 
rtl=l 

The approximation of the differential operators was constructed in such a way that in the grid analog of 

the scalar product L2(f2) on the subspace of functions equal to zero on the boundary of the grid region D h the 

following properties of the difference operators are fulfilled: 
a) div h =  - (gradh)  *, 

b) - A  h =  ( -Ah)  * > c E ,  

c) -(divhgrad)  h = [-(divhgrad) h]* > cE. 

A scheme with damping [7 ] was used as an approximation of the convective term N(U, U). 

The calculation equations in the splitting scheme appear as follows [8 ]: let the values of tnE [0, T ] where 

[0, T ] is the time interval in question, be prescribed. By ~ we will denote the value of the function on the n-th 

time step. Then, to find U n+l, pn+l, use is made of the three-stage scheme 

0 ~ U n 1 
- - -  A ' U  ~ - ( u " W / u " ,  

x Re 

t r )'nn+l' __ div n ~J U n+l - -  0 _ --V n to~+l~. A n k - -  / 
T ' "1~ 

(2) 

In the first stage transfer occurs merely by convection and viscosity forces. The obtained intermediate velocity field 

U , i.e., the predictor, is corrected in the third stage due to the pressure gradient. In formulating the boundary 

conditions for pressure the well-known method of elimination was used [8 ]. We point out that when solving Eqs. 

(2) the solution to the difference analog of the Poisson equation presents the central problem. The efficiency of 

applied programs used by the authors is reached due to the application of Kholesskii's method of expansion (LDU- 

expansion) [10] and the method of conjugate gradients. This work makes use of Kholesskii's expansion in the 

two-dimensional  statement.  The method of conjugate gradients ICCG was applied in the three-dimensional  

statement to solve the Poisson equation with the prior use of the ILU-expansion method [10 ]. 

In the parabolic e-regularization method [11 ] the basic calculation equations in difference form have the 

form 

B~]t + (Unv h) U n ---1-~" Ahun+l + vhpn+l = 0, ~'rAPt + div n U n+l = O, 
Re 

where B B* A* = > 0, A = > 0 are the iteration operators; B _- E, /3 is the iteration parameter; fir = e << 1, 
Ut = (~n+l _ ~ n ) / r ,  Pt = (pn+l _ pn)/T. The system of equations (3) prescribes a whole series of schemes. The 

specific form of the scheme is determined by the choice of the operators B and A. We used the operators 

B = E +  

A = (E + oA1)(E + oA2), 

x2 + vhA -1 div n, 
Re z R1R2 + 

--Atl = R1 -]- R2, - - d i v  n grad n = A1 + A2, 

where R 1 = R_~ > 0, A 1 = A~ > 0, R1, R.2, A1, and A 2 are the triangular matrices. 
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Fig. 3. Zone of vortex-free flow in a plasma burner of the simplest design: U1, 

U2 are the velocities of gas flows respectively through the annular and central 

nozzle (cm/sec), 1) numerical experiment, 2) natural experiment. 

The parameter a~, as the practice of calculations of different problems has shown, is optimally determined 

onty from the characteristics of the spatial grid. With such a choice of the operators B and A the system of equations 

(3) can be rewritten in the following form: 

e + ~ R~ e § ~ ~ U, = - (U~v ~) ~ - 

_ grad~ p~ _ ~ AhD~ _ ._[_l v~A_ ~ d iva/~ ,  
Re p 

p~ (E § coA~)(E § coA~) Pt -- div ~ F ~+1. 

Each of the brackets in the left-hand sides of the equations is a triangular matrix. Therefore one iteration 

of the alternately triangular method would suffice to solve the equations obtained. Regularization schemes do not 

require the statement of conditions for pressure on the boundary of the region and, furthermore, are extremely 

fast in terms of amount of arithmetic operations on each step. This makes them very effective for calculating 

nonstationary problems, To prescribe the initial pressure field, the first time step can be made using the scheme 

of splitting. 

We point out that only the application of the very effective method of regularization, LDU-expansion, and 

the ICCG + ILU method in splitting schemes enabled the authors to efficiently perform modeling of flows in a 

burner of intricate shape both in the two-dimensional and three-dimensional statement of the problem. Use was 

made of computational grids of size 100 x 30 in the two-dimensional (axisymmetric) statement of the problem and 

70 x 25 x 25 in the three-dimensional one. The two-dimensional statement of the problem was used for the initial 

study of the variants of design, and the three-dimensional one was used for a final check of the chosen design. 

(We note that by virtue of the burner axisymmetry the results of two-dimensional and three-dimensional modeling 

practically coincide.) 

Modeling of a plasma flame at the center of the burner (Fig. 1) presents a substantial problem. The authors 

made use of a model of flow in which on the basis of a considerable decrease in the gas density inside the plasma 

the latter is considered impermeable and is modeled as a solid in the gas flow with the condition of slippage of 

velocity on the flame boundary. Within the framework of the given problem another simplification was also made, 

i.e., the plasma was considered isothermal. The shape and size of the solid simulating the flame were selected from 

the results of plasma flame diagnostics [5 ]. Modeling the plasma flame in greater detail would be an unnecessary 

complication of the stated problem since a refinement of the gas flow pattern in the flame would not qualitatively 

affect vortex formation in the space between the flame and the nozzles. However, it is precisely to plasma that the 
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Fig. 4. Vortex-free flow of gases in a burner of optimized shape. 

very existence of the problem in question is related: in nonplasma burners there is no need to twist the flow to 

stabilize the plasma and the recirculation processes considered do not occur there. 

In the first stage of modeling, the characteristic vortex structures observed in the plasma burner of the 

simplest design (Fig. 2) were reproduced. Calculations were performed for burners 10 mm in diameter and 50 mm 

long and gas flow rates characteristic of the technological process: 5-10 liter/min through the annular nozzle, 0.5-2 

liter/min through the central nozzle. As a result of the calculations we found the zone of vortex-free flow in such 

a burner (Fig. 3); however, it is located in the region of small flow velocities, not ensuring stability of the plasma 

flame. Figure 3 also shows the results of visual observation of the vortices in a burner of the same geometry using 

smoke jets. 

In subsequent stages of modeling we had to go to gradual complication of the burner geometry, preserving 

the initial dimensions and gas flow rates. Altogether 16 intermediate variants were considered. 

As a result we have obtained the shape of a burner in which the interaction of the gas flows from the basic 

and annular nozzles leads to practically vortex-free flow in the entire considered range of gas flow rates (Fig. 4). 
It is shown that with preserved initial dimensions of the burner, recirculation vortices are actively inhibited in the 

case where the diameter of the narrow section of the burner lies within 3-5 mm and the length of the narrowed 

portion of the burner is no less than 20 mm. 

A plasma burner of such a design is produced at the Institute of General Physics of the Russian Academy 

of Sciences and has demonstrated high efficiency and prolonged stable operation. 
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